Analisis y diseqio de
aplicaciones informatic

e

M.* Luisa Garzon Villar

CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

Temario

INDICE SISTEMATICO

70

INTRODUCCION

CICLO DE VIDA DEL SOFTWARE
2.1. Procesos en el ciclo de vida del software
2.2. Modelos de ciclo de vida del software

METODOLOGIA DE DESARROLLO
3.1. Principales metodologias de desarrollo

ANALISIS

4.1. Andlisis de requisitos. Especificacion de Requisitos del Software (ERS)
4.2. Estudio de viabilidad

43. Los elementos del modelo de analisis

DISENO

5.1. Diseiio logico de funciones
5.2. Disefio logico de datos

5.3. Disefio de interfaces de usuario

CODIFICACION

PRUEBAS

7.1. Pruebas del software

7.2. Verificacion y validacion
7.3. Organizacion de la prueba

INSTALACION
8.1. Instalacién
8.2. Evaluacion y ajuste
8.3, Informe final

EXPLOTACION

10. MANTENIMIENTO

10.1. Tipos de mantenimiento
10.2. Actividades de mantenimiento

BIBLIOGRAFIA

CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

—

MAD Andalisis y disefio de aplicaciones informaticas

1. INTRODUCCION

Sin duda una de las tareas mas complejas que puede abordar un profesional de la informatica
es el desarrollo de un sistema software, debido a la multitud de tareas que hay que llevar a cabo,
desde el estudio previo de los requisitos, hasta su definitiva implementacién y puesta en marcha.

La ingenieria del software es el marco de referencia para el estudio de las diferentes alternativas
con las que contamos para el desarrollo de productos software de calidad, estudiando las herramien-
tas, metodologias y procedimientos empleados en proyectos de desarrollo de sistemas software.

2. CICLO DE VIDA DEL SOFTWARE

La norma IEEE 1074 define el ciclo de vida software como wna aproximacion légica a la
adquisicion, el suministro, el desarrollo, la explotacion y el mantenimiento del software, mien-
tras que la norma ISO 12207-1 entiende por modelo de ciclo de vida un marco de referencia que
contiene los procesos, las actividades y las tareas involucradas en el desarrollo, la explotacion y
el mantenimiento de un producto de sofiware, abarcando la vida del sistema desde la definicion
de los requisitos hasta la finalizacion de su uso.

A veces también se habla de “ciclo de desarrollo”, pero no hay que confundir estos términos:
mientras que el “ciclo de vida” abarca toda la vida del sistema, comenzando con su concepcion y
terminando cuando ya no se utiliza, el “ciclo de desarrollo” es un subconjunto de éste que empie-
za con el analisis y termina con la entrega del producto finalizado al usuario.

La norma ISO 12207-1 describe las actividades que se pueden realizar durante el ciclo de
vida del software y las agrupa en cinco procesos principales, ocho procesos de soporte y cuatro
procesos generales (de la organizacion), asi como un proceso que permite adaptar el ciclo de vida
a cada caso concreto.

2.1. Procesos en el ciclo de vida del software

Proceso de s
Actividades y tareas del comprador.

adquisicion
Proceso de g e
e Actividades y tareas del suministrador.
suministro
o : Proceso de | Andlisis de requisitos, disefio, codificacion, integracion, prue-
- Procesos desarrollo bas e instalacion y aceptacion.
f prl_nc:.;pales Proceso de

2 Explotacion del software y soporte a los usuarios.
explotacion

Modificacién del software existente cuando necesita modifica-

Proceso de | ciones, ya sea en el codigo, o en la documentacién asociada,
mantenimiento | debido a un error, una deficiencia, un problema o la necesidad
de mejora o adaptacion.

SISTEMAS Y APLICACIONES INFORMATICAS 71

Temario

| Procesode | Registra la informacion producida por un proceso o actividad
| documentacién | del ciclo de vida.
Proceso de : . :
esticn de la Controla las modificaciones y las versiones de los elementos
s ... | que componen el software.
configuracion
Proceso de | Controla que los procesos y los productos software del ciclo de

| aseguramiento

de la calidad

vida cumplen con los requisitos especificados y se ajustan a los
planes establecidos.

Proceso de
verificacion

Determina si los requisitos de un sistema o del sofiware estan
completos y son correctos, y si los productos software de cada
fase del ciclo de vida cumplen los requisitos o condiciones
impuestos sobre ellos en las fases previas.

Proceso de
validacion

Determina si el sistema o software final cumple con los requi-
sitos previstos para su uso.

Proceso de re-
vision conjunta

Evalua el estado del software y sus productos en una actividad
del ciclo de vida o una fase de un proyecto.

Proceso de
auditoria

Determina, en los hifos predeterminados, si se han cumplido
los requisitos, los planes y el contrato.

Proceso de
resolucion de

Analiza y elimina los problemas descubiertos durante el desa-
rrollo, la explotacion o el mantenimiento.

problemas
Proceso de Planificacion, seguimiento, control, revision y evaluacion de
gestion las tareas genéricas de cualquier organizacion.

Proceso de
infraestructura

Establece la infraestructura necesaria para cualquier proceso.

Proceso de ; : : ;
Hejora Controla y mejorar los procesos del ciclo de vida del software.
Proceso de . 5
Soron s Mantiene al personal formado.
formacion

| Realiza la adaptacion basica de la norma ISO 12207-1 a los proyectos de software.

2.2. Modelos de ciclo de vida del software

2.2.1. El modelo en cascada

Es el ciclo de vida clasico y se deriva de otras ingenierias. Se denomina asi porque para co-

menzar una fase del ciclo debemos completar la fase anterior.

72 CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

Andlisis v disefio de aplicaciones informaticas

Graficamente se representa de la siguiente forma:

Andlisis del sistema —\L

A
Andlisis de
requisitos sofware
A
| Disefio i
v
A !
Codificacion |
|
M

Prueba [T
v

Mantenimiento

il

Las fases en que se divide este ciclo de vida puede presentar ligeras variaciones segun el
autor, pero en esencia seran similares a las siguientes:

Analisis del sistema. Un sistema software forma parte de un sistema mayor con el cual
se relaciona. En este punto analizamos el sistema en su conjunto para poder establecer
objetivos y poder determinar cudles de ellos deben ser abordables por el software.

Andlisis de requisitos software. En esta fase nos centramos en los requisitos del soft-
ware, definiendo la funciones a realizar, los datos, el comportamiento y la interaccion
entre los elementos funcionales.

Disefio. En esta otra fase tomamos los requisitos definidos en la etapa anterior y diseflamos
los componentes del sistema software a construir, indicando las estructuras de datos a emplear,
modulos a construir, procedimientos, algoritmos e interfaces que forman el sistema final.

Codificacion. Tomando la documentacion generada en el paso anterior, debemos im-
plementar el sistema en una maquina concreta, codificando los procedimientos defini-
dos en un lenguaje de programacion, construyendo las interfaces y las estructuras de
datos necesarias.

Prueba. Tras la codificacion debemos someter a prueba el sistema para cercionarnos de su
buen funcionamiento y del cumplimiento de los requisitos fijados al inicio del proyecto.

Mantenimiento. La produccion de software no finaliza con la entrega del mismo, ya que
debe ser revisado para ajustarlo a nuevos requisitos, correccion de errores detectados tras
la entrega o por la aparicion de requisitos no contemplados en el proyectos inicial, y que
hace necesaria la revision del producto.

Este modelo presenta dificultades en su aplicacioén, ya que en la prictica se producen rea-
limentaciones, de modo que al finalizar una fase se puede detectar la necesidad de introducir
correcciones sobre etapas anteriores.

Al poner en practica este modelo, los problemas que se presentan se deben en gran medida a
una mala definicion de los requisitos del sistema.

SISTEMAS Y APLICACIONES INFORMATICAS 73

Temario MAD

2.2.2. El modelo de construccion de prototipos

Uno de los problemas del ciclo de vida clasico es producido por la dificultad de especificar
claramente los requisitos del sistema a desarrollar.

En este otro modelo el usuario define unos requisitos previos con los que se construye un
prototipo. Revisando este prototipo podra decidir realmente qué es lo que quiere y como lo
quiere. Este proceso puede repetirse hasta conseguir un prototipo que se ajuste a las necesida-
des del cliente.

La construccion de prototipos facilita la comunicacion con el cliente, del mismo modo en
que lo hace una maqueta arquitectonica, ya que permite al usuario evaluar con mayor facilidad el
producto antes de ser definitivamente construido.

En este paradigma de desarrollo de software podemos distinguir varias fases, que quedan
reflejadas en el grafico siguiente:

|
|
: |
| I
[nvestigacion : Breve andlisis :
preliminar ! y especificacién :
I I
I
. | ! .
Definicion de : Diseii :
requisitos del i SER0Y '
- i realizacion !
sistema i |
1
' I ! |
1 1
1 1
Disefio técnico ! — Evaluacién i
1
! |
I
! | ! .
| |
Programacion ' ; 7 !
& | Modificacion !
y prueba ! !
|
| |
] . 1 .
I I
| I
L . ! e 1 a0 103 I
Mantenimiento | —— Terminacién |
]
I ;
I I
I I
I

— Breve anilisis y especificacién: se efectiia un rapido andlisis del sistema que sirva de
base para la construccion del prototipo.

— Diseiio y realizacion: construccion del prototipo.
Evaluacion: el cliente evalia el prototipo a fin de afinar los requisitos.

— Modificacion: se modifica el prototipo para satisfacer los requisitos especificados por el
cliente en el paso anterior.

— Terminacion: se termina la definicion de requisitos del sistema final.

Debe ponerse en conocimiento del cliente que el prototipo mostrado no es el sistema final,
sino un modelo utilizado para facilitar la comunicacion con €l, y que servird como base para la
construccion del sistema final.

74 CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

MAD Analisis y disefio de aplicaciones informdticas

2.2.3. El modelo en espiral

Este modelo conjuga las caracteristicas de los dos anteriores, de manera que consta de una
serie de pasos o etapas como las del modelo clasico pero existe una realimentacion como en el
caso del modelo de construccion de prototipos.

En este modelo se definen cuatro etapas que se representan graficamente mediante cuatro
cuadrantes.

Planificacion Analisis de riesgo
Evaluacion del cliente Ingenieria

Planificacion: se determinan los objetivos, requisitos y restricciones del proyecto.
— Analisis de riesgo: se analizan alternativas, se identifican riesgos y se resuelven.
— Ingenieria: desarrollo del producto.
— Evaluacion del cliente: se valoran los resultados obtenidos.

Este modelo produce productos de manera incremental, afadiendo nuevos requisitos a cada
vuelta de la espiral.

En la fase de anilisis de riesgo se determinan las diferentes alternativas y los riesgos presen-
tes en cada alternativa.

En la fase de ingenierfa podemos emplear un enfoque clasico o de construccion de prototipos.

2.2.4. Técnicas de cuarta generacion

Las herramientas de cuarta generacion son herramientas que facilitan la especificacion de
caracteristicas del software de una forma mas intuitiva, quedando como responsabilidad de la
herramienta la conversion de dicha especificacion a codigo fuente.

Los entornos de cuarta generacion deben incluir herramientas para:

— Consulta de bases de datos mediante lenguajes no procedimentales.
— Generadores de formularios.

— Generadores de informes.

— Generadores de codigo.

— Manipulacién de datos.

— Componentes software reutilizables.

SISTEMAS Y APLICACIONES INFORMATICAS 75

Temario MAD

Aligual que en otros enfoques, debemos partir de una recoleccion de requisitos siguiendo un
esquema similar al mostrado en el siguiente grafico.

Recolecion

de requisitos |
N
Diserno —1/

1\
Implantacién J/

Prueba

!

Este tipo de herramientas facilita enormemente la produccién, especialmente en proyectos
pequenos.

3. METODOLOGIA DE DESARROLLO

Una metodologia de desarrollo es una recopilacion de técnicas y procedimientos estructu-
rados en fases para la produccion de productos software de manera eficaz y englobando todo el
ciclo de vida del mismo.

— Indica qué hacer, cémo, cuédndo y quién debe hacerlo.
— Determina las etapas y controles a aplicar.

La metodologia de desarrollo de software ha ido cambiando a lo largo de la historia; mientras
que en un principio las practicas eran totalmente artesanas y sin metodologias definidas (desa-
rrollo convencional), poco a poco se llega la necesidad de definir unas reglas que eviten los pro-
blemas propios de no seguir unas normas concretas. Partiendo de la programacion estructurada
surgieron métodos de anlisis y disefio que cubrieron el ciclo de vida completo (desarrollo estruc-
turado). Actualmente el nuevo enfoque en ingenieria del software lo constituye el paradigma de
la orientacion a objetos (desarrollo orientado a objetos).

3.1. Principales metodologias de desarrollo

3.1.1. Metodologia MERISE

Es una metodologia de desarrollo de sistemas de informacion disefiada en Francia a finales
de los afios setenta con el fin de ser utilizada por la administracién pablica.

76 CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

MAD Analisis y diseiio de aplicaciones informaticas

Merise se divide en varias etapas:
— Esquema director (Schma directeur).

— Estudio preliminar (Etude préalabie).

— Analisis detallado (4nalyse detaillée).
— Analisis técnico (4nalyse technique).
Realizacion (Realisation).

— Mantenimiento (Maintenance).

3.1.2. Metodologia SSADM

Es una metodologia de desarrollo disefiada en el Reino Unido, con el objetivo de ser utilizada
por la Administracién Piblica, ademas de por las empresas privadas con las que ésta contrata su
servicios, y que ha sido adoptado igualmente por otras empresas privadas con la intencién de
mejorar sus productos software. La primera versién vio la luz en el afio 1981.

SSADM emplea tres (écnicas fundamentales durante todo el ciclo de desarrollo, que son:

- Logical Data Modelling (LDM): se trata de un modelo que utiliza a su vez LDS (Logical
Data Structure), para representar entidades de datos y las relaciones entre estas entida-
des, de un modo similar a los diagramas DED empleados en Métrica V2.

— Data Flow Modelling (DFM): utilizados para la representacion de los tratamientos y de
los flujos de datos entre éstos. Utiliza para ello un conjunto de DFD'’s.

— Entity Even Modelling (EVM): consiste en un conjunto de diagramas ELH (Entity Life
Histories), con los que se representan los eventos del sistema y la secuencia en la que
éstos tienen lugar.

3.1.3. Metodologia METRICA

Es una metodologia de desarrollo propuesta por la administracién piblica espafiola para ser
utilizada en el desarrollo de productos software de la propia administracion y que ha sido adap-
tado por otras administraciones publicas (local y autonémica), asi como por algunas empresas
privadas.

Métrica V3, a diferencia de su version anterior, se divide en procesos que a su vez se en-
cuentran estructurados en actividades y estas ultimas, en tareas. Para cada tarea se definen los
participantes, productos, técnicas y practicas.

Esta metodologia de desarrollo ha sido ideada para abarcar una gran variedad de proyectos
de diferente complejidad, por lo que su estructura deberd adaptarse a cada proyecto particular en
funcion de su dimension y caracteristicas.

Métrica V3 se estructura en 3 procesos principales:
Planificacion de Sistemas de Informacion (PSI).
— Desarrollo de Sistemas de Informacion (DSI).

— Mantenimiento de Sistemas de Informacion (MSI).

SISTEMAS Y APLICACIONES INFORMATICAS 77

Temario MAD

El segundo proceso (DSI) es demasiado amplio, pro lo que se subdivide, a su vez, en los
siguientes cinco procesos:

— Estudio de Viabilidad del Sistema (EVS).

— Analisis del Sistema de Informacion (ASI).

— Disefo del Sistema de Informacion (DSI).

— Construccion del Sistema de Informacion (CSI).

— Implantacion y Aceptacion del Sistema (IAS).

4. ANALISIS

Sea cual sea la metodologia utilizada existen una serie de puntos que deben ser cubiertos y
que indicamos a continuacion:

1. Identificacion de las necesidades del cliente, recopilando informacion sobre el sistema ac-
tual y sus deficiencias, asi como los objetivos marcados por el cliente. En esta primera etapa
el analista se reunird con el cliente para recopilar toda la informacion precisa para poder
especificar los requisitos del sistema a desarrollar teniendo en cuenta los siguientes puntos:

— Lista de problemas y necesidades en el sistema de informacion.
— Datos empleados y relacion entre ellos.

— Aplicaciones actuales.

— Nuevas aplicaciones.

2. Estudio de viabilidad, para lo cual debemos definir claramente los recursos (tiempo,
presupuesto, herramientas, personal necesario...) con los que vamos a disponer, ya que
serdn estos factores los que limiten la viabilidad del proyecto. Es evidente que cualquier
proyecto es viable si los recursos son infinitos, pero €ste es un caso ideal. Para el estudio
de viabilidad nos centraremos en las siguientes areas:

— Viabilidad econémica: se lleva a cabo mediante analisis coste-beneficios.

— Viabilidad técnica: debemos determinar si existen las herramientas y técnicas nece-
sarias para el desarrollo del sistema.

— Viabilidad legal: determinara la existencia de problemas legales en el desarrollo del
sistema, como puede ser la vulneracion de algin derecho (LORTAD).

[+

Andlisis economico: en el que se detallaran los gastos y beneficios.

Andlisis técnico: en el que se detallan las herramientas a emplear.

Sl

. Modelado del sistema: debemos crear un modelo del sistema a construir que sea lo mas fi-
dedigno posible, especificando los datos, transformaciones realizadas sobre estos datos y
comportamiento dindmico del sistema. En esta fase se utilizan técnicas como los diagra-
mas E/R, DFD, DFC, diccionarios de datos... Ademas se definen requisitos de seguridad
y de control del sistema a desarrollar. En esta fase se pueden emplear herramientas CASE
para modelar el sistema y estudiar su comportamiento.

78 CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

—

MAD Analisis y disefio de aplicaciones informaticas

4.1. Andlisis de requisitos. Especificacion de Requisitos del
Software (ERS)

La definicion de los requisitos que debe cumplir el software a construir es un trabajo que
deben realizar conjuntamente los analistas y el cliente, ya que ni el cliente conoce el proceso de
disefio, ni el analista conoce completamente el trabajo que debera realizar el software.

Segun el estandar IEEE 1074 se deben realizar tres actividades:

— Definir los requisitos del software: mediante técnicas de recogida de informacion (en-
trevistas, prototipado, etc.) se debe crear una especificacion preliminar de los requisitos
que debe cumplir el software.

Definir los requisitos de las interfaces del software con el resto del sistema y con el
exterior: también son requisitos a definir como se relacionara el sistema con otros ele-
mentos software, con los elementos hardware y con el usuario.

— Integrar los requisitos en un documento de especificacion y asignarles prioridades:
este documento seréd lo que denominamos ERS (Especificacion de Requisitos Software)
y debera ser revisado y posteriormente aprobado por el cliente para poder seguir adelante
con el proyecto.

4.2. Estudio de viabilidad

4.2. 1. Seleccion de una alternativa

Para la seleccion de una alternativa se observaran las discrepancias entre ellas, debiéndose
seleccionar la mas viable, en base a los criterios siguientes:

— Estudio de las ventajas e inconvenientes de cada una, teniendo en cuenta la facilidad de
uso, los recursos que se necesita emplear para su desarrollo y la estimacion del tiempo
que va a transcurrir hasta su implantacion.

— Estimacion de costes y tiempo, en funcion del coste del hardware, del coste del personal
y del coste de implantacion.

— Establecimiento de los beneficios para la empresa desarrolladora y para el cliente.

4.2.2. Analisis de la viabilidad técnica y economica

La implantacion de un nuevo sistema requiere un estudio previo de las repercusiones positivas o
negativas que se produzcan sobre el usuario y la empresa. Para ello se analizan las limitaciones que pue-
dan aparecer durante su desarrollo, implantacion y explotacion. También hay que pensar que no siempre
es necesario la modificacion total o parcial del sistema, dependiendo de su aceptacion y de su eficacia.

4.3. Los elementos del modelo de andlisis

El andlisis debe perseguir tres objetivos fundamentales: debe describir fielmente lo que quie-
re el cliente, debe servir de base a la construccion del software, y debe establecer los requisitos
que este debe cumplir, de forma que al finalizar su construccion se pueda comprobar si el produc-
to final da respuesta o no a todos estos requisitos.

SISTEMAS Y APLICACIONES INFORMATICAS 79

Temario MAD

Para lograr este cometido el modelo de anélisis abre tres frentes:

— Modelado de datos: utilizando la técnica del diagrama entidad/interrelacion (DER),
representa entidades y asociaciones utilizando las relaciones entre los objetos de datos.

— Modelado de procesos: utilizando la técnica del diagrama de flujo de datos (DFD),
representa la transformacion de los datos y la division en funciones y subfunciones de
la aplicacion.

— Modelado del comportamiento: utilizando la técnica del diagrama de transicion de
estados (DTE), representa el comportamiento del sistema ante sucesos externos.

Como nexo de unién a estos tres modelos se encuentra el diccionario de datos (DD), un al-
macén donde se definen todos los objetos que aparecen en los tres modelos.

4.3.1. Modelado de funciones

4.3.1.1. Diagrama de flujo de datos. DFD

Es una técnica definida por DeMarco a finales de los afios setenta. Esta técnica es empleada
para modelar el sistema tomando en consideracion las funciones a realizar por el mismo y los flu-
Jos de informacion entre diferentes funciones. El DFD emplea diferentes niveles de abstraccion
para definir el sistema, utilizando para ello simbolos gréificos para definir los elementos basicos
del sistema. Es importante resaltar que con esta técnica se pone el énfasis en “el qué” sin entrar
en “el como”.

Entre los elementos basicos de un DFD, tenemos:
— Procesos.

— Entidades externas.

— Almacenes de datos.

— Flujos de datos.

Un DFD debe cumplir las siguientes caracteristicas:
— Grifico.
— Legible.
— Compresible.
— Debidamente particionado.
— Bien documentado.
- No redundante.
— Establecer “qué” hacer, y no “cémo”.
Entidades externas. Una entidad externa representa un elemento externo al sistema

que aporta o recibe informacion del mismo. Las entidades externas suelen aparecer en el
diagrama de contexto, que representa el primer nivel de abstraccion.
p

80 CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

Y

MAD Analisis y disefio de aplicaciones informaticas

Hemos de tener presente lo siguiente:

* Nos informan sobre los flujos de informacién hacia y desde el exterior.

* Los flujos entre entidades externas no nos interesan y, por tanto, no se representan.
* Pueden aparecer repetidos para evitar entrecruzamiento de lineas.

En cuanto a la representacion grafica existen dos alternativas: la primera se debe a Your-
don y DeMarco y la segunda es la empleada por Métrica V2 y SSADM.

Métrica V2, SSADM Yourdon, DeMarco

— Procesos. Representan funciones de transformacion de datos, de manera que reciben flujos
de datos de entrada y generan flujos de datos de salida obtenidos mediante transformacion
de los datos de entrada.

Hemos de tener en cuenta:
* Un proceso no generara ni destruird datos, sélo los transforma.
* Entre una entidad externa y un almacén de datos es necesario un proceso.

La representacion grafica es:

Meétrica V2, SSADM Yourdon, DeMarco

Los procesos se identifican con un niimero (que depende del nivel de abstraccion en el
que nos encontremos) y de un nombre que debe ser significativo.

Almacén de datos. Como indica su nombre, se trata de un depésito de informacién que
puede ser utilizado por los procesos para almacenar y/o recuperar informacion.

Al igual que los procesos los almacenes de datos son identificados mediante un nombre.

Hemos de considerar:

* Los almacenes de datos se identifican con un nombre representativo de los datos que
almacena.

* Se puede repetir en un mismo diagrama para contribuir a su legibilidad.

* No se hacen referencias al entorno fisico.

SISTEMAS Y APLICACIONES INFORMATICAS 81

Temario MAD

Su representacion grafica es:

Meétrica V2, SSADM Yourdon, DeMarco

— Flujo de datos. Sirven para conectar procesos, almacenes y entidades, representando la
informacion que fluye entre ellos, asi como el sentido de dicho flujo.

Hemos de tener en cuenta:

* Los flujos se limitan a transportar informacion; de ningin modo los crea o destruye.
* Conectan el resto de componentes.

* La flecha indica la direccion de los datos.

Su representacién grafica es la mostrada a continuacion:

P

— Descomposicién por niveles. Esta técnica se basa en la filosofia top-down, en el sentido
de que se analiza y se representa el sistema usando varios niveles de abstraccion, comen-
zando por el mayor nivel de abstraccién posible y evolucionando de forma progresiva a
niveles de mayor detalle.

Se utilizan:

* Un diagrama de contexto.

* Varios DFD en niveles intermedios.
* Varios DFD en el nivel de detalle.

Cada proceso es “explotado” en un nuevo DFD que especifica un mayor nivel de detalle

(menor abstraccion).

1. El nivel mas abstracto, denominado también diagrama de contexto, representa todo
el sistema en un Gnico proceso y las entidades externas con las que se relaciona, asi
como los flujos de informacion entran en el sistema desde dichas entidades externas:

0 Sistema

Entidad 3

82 CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

—

MAD Andlisis y diseiio de aplicaciones informaticas

!‘\J

A continuacion descomponemos el proceso del diagrama de contexto en un DFD con
un mayor nivel de detalle.

e

Repetimos el proceso anterior hasta llegar a un nivel de detalle suficiente.

4.3.1.2. Diccionario de datos

El diccionario de datos es un elemento muy importante en el andlisis, ya que en €l se toma
nota de todos los elementos a los que hacemos referencia en los diagramas empleados para mo-
delar el sistema que queremos construir. Este elemento nos servird para tomar nota de los datos,
objetos, entidades, almacenes y elementos de control a los que hacemos referencia en los DFD,
DEC, DTE...

Existen variaciones en cuanto al formato empleado en el diccionario de datos, pero encontra-
mos casi siempre los siguientes elementos:

|

Nombre del elemento en cuestion.

— Alias o nombres alternativos con los que se conoce a dicho elemento.
— Donde se usa dicho elemento, indicando los procesos.

— Como se usa dicho elemento en cada proceso.

— Descripcion detallada del elemento.

— Informacion adicional, como pueden ser restricciones, limitaciones, condiciones o cual-
quier otra informacion pertinente.

El diccionario de datos es un elemento muy voluminoso y que se hace dificil de mantener; es
por ello que haremos uso de €l empleando alguna herramienta CASE, que sera la encargada de la
actualizacion del mismo a medida que vayamos modelando el sistema.

Una condicion importante a cumplir es que no pueden existir duplicidades, de modo que dos
elementos no puedan tomar el mismo nombre.

La herramienta CASE debe permitir, ademas, efectuar consultas al diccionario. de manera
que en caso de modificaciones al proyecto podamos saber el impacto que conlleva dicho cambio
y determinar qué elementos son afectados y en qué procesos aparecen dichos elementos.

La descripcion del contenido de los elementos en el diccionario de datos puede seguir una
sintaxis similar a la siguiente:

ELEMENTO :
= Designa el contenido.
i Un elemento compuesto puede estar formado por la concatenacion de varios
simples.
[]] Un elemento compuesto por varias alternativas.
{ In Un elemento compuesto por varios simples repetidos “n” veces.
() Elemento opcional.

SISTEMAS Y APLICACIONES INFORMATICAS 83

Temario MAD

4.3.1.3. Especificacion de procesos

Una vez completada la descomposicion de procesos representados en los DFD 'y alcanzado el
nivel de maximo detalle, tenemos un esquema de los procesos que forman parte de la aplicacion
analizada. El siguiente paso consiste en describir las transformaciones efectuadas por estos proce-
so0s, ya que reciben flujos de informacién y producen flujos de salida de informacion efectuando
transformaciones que no se han especificado en el DFD.

Debemos describir el modo de acceso a los datos del sistema (que se recogen en el dicciona-
rio de datos), frecuencias de ejecucion de los procesos e informacion sobre la ejecucion especifi-
cando los algoritmos empleados.

Para describir los procesos contamos con varias técnicas que podemos combinar:
— Lenguaje natural.

— Lenguaje estructurado.

— Tablas de decision.

— Arboles de decision.

4.3.2. Modelado de datos

El objetivo del modelado de datos es la representacion grafica mediante unas reglas y con-
venciones de los datos del mundo real que queremos almacenar en una base de datos.

— Elementos del modelo E/R.
* Entidad: cualquier objeto del que guardamos informacion.

* Tipo de entidad: el conjunto de todas las entidades que cumplen una determinada
condicion. Las entidades serian, por lo tanto, ocurrencias de un tipo de entidad.

* Asociacion o interrelacion: relaciones o correspondencias entre entidades.

* Tipo de asociacién o interrelacion: conjunto de todas las asociaciones que cum-
plen una cierta definicion. En este punto muchos autores indican que a partir de este
momento, y por motivos de claridad, utilizaran el término “entidad™ para hacer re-
ferencia tanto a las entidades como a los tipos de entidad, y el término “asociacion”
o “interrelacion” para hacer referencia tanto a interrelaciones como a tipos de inte-
rrelacion. Nosotros haremos lo mismo y dejaremos de utilizar los citados términos a
partir de este momento.

* Tipo de la asociacién: representa el grado de participacion de cada entidad en la
interrelacion. Puede ser:

e (I1:1): cada ocurrencia de la entidad A esta asociada con 0 6 1 de la entidad B y
viceversa.

« (1:M): cada ocurrencia de la entidad A estd asociada con 0, 1 o varias ocurren-
cias de la entidad B, y cada ocurrenciade B con 0 0 1 de A, 0 viceversa.

« (M:N): cada ocurrencia de la entidad A esté asociada con 0, 1 o varias ocurren-
cias de la entidad B y viceversa.

* Atributo de entidad o de interrelacion: informacion acerca de una entidad o de
una interrelacion, que sirve para identificarla o describirla.

84 CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

MAD Andlisis y disefio de aplicaciones informaticas

* Atributos identificadores o claves: los que tienen diferentes valores para cada ocu-
rrencia de entidad o interrelacion. Pueden estar compuestos por varios atributos.

* Atributo identificador principal o clave principal: el mas importante de los anteriores.

* Entidades y asociaciones débiles: son entidades débiles las que basan la existencia
de sus ocurrencias en la existencia de ocurrencias de otra entidad “padre” de las que
dependen. Son asociaciones débiles las que unen este tipo de entidades débiles con
sus entidades “padre”.

* Dominio: el conjunto de valores, agrupados bajo un nombre, que puede tomar un
atributo. El dominio de un atributo podra definirse por intencién: indicando el tipo
de datos que podrd contener, o por extension: indicando todos los valores posibles.

* Grado de una asociacion: indica el numero de entidades que participan en una aso-
ciacion. Podremos encontrarmos con asociaciones de grado dos o binarias, de grado
tres o ternarias, etc. Existe un caso especial de asociaciones binarias, las asociacio-
nes reflexivas, donde las dos entidades que participan son la misma.

* Cardinalidad: nimero maximo y minimo de ocurrencias de una entidad que pueden rela-
cionarse a través de una asociacion con otra entidad. Se representa de la siguiente forma:

(cardinalidad-minima, cardinalidad-mdxima)

Y las cardinalidades posibles son: (0,1), (1,1), (0,M), (1,M), o (M,N).

— Construccién de un esquema E/R. Las etapas que habrd que realizar para conseguir el
modelo completo serdn las siguientes:

a) Identificacion de entidades, sus atributos y la clave principal.

b) Identificacion de las interrelaciones entre entidades, indicando el tipo de interrela-
cion y la cardinalidad, asi como los atributos que pudieran tener.

¢) Presentacion del modelo entidad-interrelacion.

— Coémo descubrir entidades y asociaciones. El disefio de una base de datos es una labor
creativa, y aunque no existen reglas que indiquen qué elemento va a ser entidad y cual
otro interrelacion, si se pueden dar algunas recomendaciones que se pueden seguir a la
hora de descubrir entidades e interrelaciones.

* Los sustantivos utilizados como sujetos o complementos directos en una frase suelen
ser entidades, aunque también pueden representar atributos. Por ejemplo, en la frase:
“Los clientes que deseen comprar los productos que ofrece la empresa ...” pueden
descubrirse dos entidades, los clientes (o socios) y los productos (o articulos). O en
esta otra: ... almacenes donde guardan los libros que distribuyen™ podemos distin-
guir también otras dos almacenes y libros (o articulos).

* Los nombres propios suelen ser ocurrencias de entidades.

* Los verbos, suelen indicar interrelaciones. Por ejemplo en la frase: ... pudiendo un
socio avalar a varios otros socios”. Indica una interrelacion, en este caso reflexiva,
de la entidad socios.

Las preposiciones y las frases preposicionales entre dos nombres suelen indicar inte-
rrelacion o atributo de una entidad. Por ejemplo, la frase: “..el nimero de volimenes
de que consta”, indica que la entidad tendrd un atributo que almacene el niimero de
volumenes de que consta la coleccion.

SISTEMAS Y APLICACIONES INFORMATICAS 85

Temario

descubiertas utilizando la siguiente notacion:

* Entidades: un rectangulo con el nombre en su interior.

* Entidades débiles: dos rectangulos concéntricos con el
nombre en su interior.

* Interrelaciones: un rombo con el nombre en su interior.

* Asociaciones débiles: un rombo indicando en su interior
el tipo de debilidad 1D, identificaciéon 6 EX existencia.

Tipo de asociacion: caracteres 1. M o N al lado de la aso-
ciacion.

* Cardinalidad con la que una entidad participa en una
asociacion: caracteres entre paréntesis (1,1), (1,M), ...al
lado de la entidad.

MAD

— Presentacion del modelo. Se mostraran en el modelo todas las entidades y asociaciones

SOCIOS

PEDIDOS

VKIXO

(L,1)

Y

ARTICULOS

|
(Total) (?

* Especializacion: total y exclusiva.
(Exclusiva)

1

LIBROS

COLECCIONES

CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

MAD Analisis y disefio de aplicaciones informaticas

ARTICULOS

* Especializacion: parcial e inclusiva.

LIBROS COLECCIONES

* Atributos: el nombre del atributo al lado del simbolo.

* Atributos: identificadores.

* Atributos: claves alternativas.

* Atributos: atributos multivaluados.

544

* Atributos: atributos opcionales. ---O

Nombre

: : : Nombre-completo Apellido-1
* Atributos: atributos compuestos. i .

Apellido-2

4.3.3. Modelado de comportamiento

A parte de los aspectos referidos a los datos y a las funciones, al especificar un sistema también es
necesario dar una perspectiva de su comportamiento. Para describir estos aspectos respectivos al con-
trol se utilizan técnicas como los diagramas de transicién de estados, las tablas de activacion de proce-
508, 0 las redes de Petri. Para no extendernos demasiado describiremos sélo dos de estas técnicas.

4.3.3.1. Diagrama de transicion de estados

Representa el comportamiento de un sistema a lo largo del tiempo mostrando los cambios de
estado que se producen a consecuencia de los eventos, asi como las acciones a llevar a cabo.

— Estados: representan un modo observable de comportamiento. Por ejemplo, un ascensor
puede encontrarse en uno de los siguientes estados: parado, marcha, averiado.

SISTEMAS Y APLICACIONES INFORMATICAS 87

Temario MAD

— Transiciones: vienen representadas por flechas que parten de un estado a otro, indi-
cando que desde un estado podemos pasar a otro diferente si se dan las condiciones
especificadas.

Las transiciones se etiquetan mediante una fraccion, de modo que el texto que aparece en la
parte superior indica un evento y el que aparece en la parte inferior indica una accion que respon-
de a dicho evento.

boton pulsado

motor en marcha
parado marcha

4.3.3.2. Tabla de activacion de procesos

La tabla de activacion de procesos representa sucesos y procesos que son activados por estos
SUCESOS.

En la tabla se representan las posibles combinaciones de sucesos de entrada, asi como los
sucesos de salida provocados por las combinaciones de los de entrada.

Al final de la tabla se especifican los procesos a activar, asi como las condiciones bajo las que
dichos sucesos son activados.

~ TABLA DE ACTIVACION DE PROCESOS

Sucesos de entrada

Suceso 1 a1 ¢ 18 G TR PO JER W1 R I O L)
Suceso 2 B RO THCSEEE ARG =1
Suceso 3 0,20 0 IOl I R0 o O
Salida

Seral 1 A7 DO D) T M (L [
Seiial 2 1 (0 [0 |O [0 |O [O |O

Activacion de procesos

Proceso | 00t 1 O 5 N O S S 5 J881 55
Proceso 2 1 {0 |0 |0 (O |1 |O |1
Proceso 3 (AT 1 e [T A 0 D | B)
88 CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

—

—

MAD Anadlisis y disefio de aplicaciones informdticas

5. DISENO

La finalidad de esta fase es lograr el disefio arquitecténico de la aplicacion y de la base de
datos. Para ello se realizara el disefio de las funciones, de los datos y de la interfaz, quedando toda
esta informacion recogida en el cuaderno de carga, que basicamente contiene:

— Descripcion de ficheros.

— Descripcion de registros.

— Descripcion de las estructuras de datos.

— Estructura de los modulos.

— Disefio de entrada de datos por pantalla.

— Diseo de salida de datos por pantalla.

— Diseno de salida por impresora.

— Descripcion de los elementos utilizados en cada modulo.
— Definicion de las variables.

— Diseno de algoritmos.

5.1. Diserio logico de funciones

El objetivo fundamental de esta tarea es desarrollar la estructura del programa, o sea, a partir de los
DFD’s, describir los médulos que componen la aplicacion y las relaciones existentes entre ellos represen-
tando esta iformacion en lo que denominamos “diagrama de estructura” o ““Cuadros de Constantine”.

Para ello deberemos haber refinado los DFD’s de tal forma que de cada proceso primitivo
podamos extraer un modulo.

Los modulos se caracterizan por su independencia funcional. Los criterios que se siguen para
lograr esta independencia son dos:

— Cohesion: la cohesion hace referencia a la relacion que tienen los procesos que inte-
gran un modulo, de manera que para realizar una tarea determinada todos los procesos
involucrados deben estar incluidos en un mismo médulo, mientras que los procesos que
realicen otra tarea estén disponibles en otros modulos de forma independiente, logrando
asi una transaccion minima de datos entre los mddulos que conforman un programa. En
resumen, el grado de cohesion se establece en funcion de la relacion funcional de los
procesos que forman los modulos de un programa.

— Acoplamiento: hace referencia a la interconexion existente entre los distintos modulos.
Los modulos deben ser independientes en el mayor grado posible, es decir, la cantidad
de informacién que comparten debe ser minima o nula, lo que facilita su disefio.

Los flujos de datos que unen los procesos primitivos podrén ser de dos tipos: de trans-
formacién o de transicion. Esta diferencia influird a la hora de determinar la estructura
jerarquica de los médulos.

* Flujo de transformacion: existiran unos datos de entrada
procedente del exterior que deben ser transformados me-
diante el software existente en datos de salida. A los datos de
salida se le denomina flujo saliente, mientras que los datos
de entrada han seguido un camino llamado flujo entrante.

SISTEMAS Y APLICACIONES INFORMATICAS 89

Temario

MAD

* Flujo de transacciones: en este caso los datos de entrada son evaluados y en fun-
cion del resultado seguira uno de los caminos de accion. El lugar donde los datos son

evaluados para seguir un camino se denomina centro de transaccion.

O—»

5.1.1. Diagrama de estructura o Cuadros de Constantine

Los elementos que intervienen en el diagrama de estructura, bdsicamente son:

— Médulos: son trozos de codigos que cumplen una determinada fun-
cion, pudiendo ser llamados en cualquier momento, devolviéndonos
un resultado. Un médulo puede ser un programa o un subprograma. El
nombre que se le asigne debe indicar la funcion que realiza. Su repre-

sentacion es la siguiente:

— Médulos predefinidos: se encuentran dentro de las bibliotecas de modulos o librerias.

— Comunicacion de datos: O\
— Comunicacion de control: %

— Tipos de estructuras:

1. Secuencia: cuando un moédulo llama a varios modulos y
se van a ejecutar uno a continuacion de otro siguiendo un
orden preestablecido. La ejecucion ira siempre de izquierda
a derecha y de arriba a abajo.

/ '\

¥

Z

2. lteracién: al igual que en caso anterior, se llamaran a varios modulos, pero con
la diferencia de que éstos se ejecutaran mas de una vez. Junto a las lineas se
situaran el simbolo de “datos™ o de “control”, segun el proceso o el resultado de

la operacion.

X

ﬂ

X Z

90 CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

MAD Analisis y disefio de aplicaciones informadticas

3. Decision: se aplica cuando el médulo situado en la parte superior tiene que decidir
qué modulo es el que se va a ejecutar.

X

X X

Las fases a seguir para obtener un disefio modular basdndonos en el DFD, son:

1. Revision y afinado de los DFD a diversos niveles.

2. Comprobacion del tipo de DFD: de transformacion o de transaccion.

3. Identificacion del centro de transaccion o transformacion. Especificacion de los flujos.
4. Conversion del diagrama de flujo de datos en la estructura modular del programa.

5. Refinado de la estructura modular obtenida empleando criterios de calidad de software.
6. Revision de la funcionalidad del diagrama de estructuras obtenido.

5.1.2. Diseno detallado

Después de haber realizado la fase de diseio del sistema, comienza la fase de disefio detalla-
do, donde se realizara el desarrollo de la logica interna, o sea, los algoritmos que componen cada
uno de los modulos.

La calidad de un algoritmo no depende s6lo de la efectividad de su funcionamiento, sino de la
claridad de su codigo. Es muy importante que sea facilmente comprensible y que esté bien estruc-
turado, ya que esta caracteristica facilitard su mantenimiento, actualizacién y adaptacion a nuevas
situaciones. Un algoritmo bien hecho debera cumplir como minimo las siguientes condiciones:

— Deberd ser fiable. Los resultados deberan ser exactos y precisos.

— Debera ser eficiente. Utilizara de forma 6ptima los recursos del ordenador, no debera
ocupar mucha memoria, a la vez que serd rapido en su ejecucion.

— Debera ser robusto, tener prevista una respuesta clara sean cuales sean los datos de en-
trada introducidos y sean cualesquiera las circunstancias bajo las que se ejecuta.

— Deberd ser transportable, debera estar disefiado de forma que se pueda poner en fun-
cionamiento en cualquier ordenador independientemente del hardware de que disponga
y del sistema operativo instalado.

— Debera ofrecer todas las facilidades posibles al usuario, con un interfaz amigable,
mensajes claros y concisos, y una buena documentacion.

El disefio de algoritmos es una labor creativa, sin embargo existen técnicas de desarrollo,
como pueden ser la programacion modular o la estructurada, que facilitan esta labor. Sin embar-
go, para la descripcién de algoritmos se utilizan sistemas normalizados, entre los que poder elegir
en el momento de la trascripcién de las acciones que lo componen y que posteriormente faciliten
la codificacion en un lenguaje de programacion.

Como sistemas de representacion entre los que podremos elegir, estén: el método de Warnier,
el método de Jackson, el método de Bertini, el método de Tabourier, 0 el método de Chapin.

SISTEMAS Y APLICACIONES INFORMATICAS 91

lemario MAD

5.2. Diserio logico de datos

5.2.1. El modelo relacional

El modelo relacional estd formado por la union de tres componentes:
a) Componente de estructura: formado por relaciones, filas columnas, claves, etc.

b) Componente de manipulaciéon: formado por una coleccion de operadores para acceder
a los datos.

¢) Componente de integridad: formado por una coleccion de reglas de integridad general.

Repasemos ahora algunos conceptos basicos de este modelo que nos servirdn para convertir
un modelo conceptual en un modelo relacional:

_ Relacién o Tabla: matriz rectangular donde se representan como filas (tuplas) las ocu-
rrencias y como columnas los atributos. La interseccion fila-columna representa el valor
del atributo para la ocurrencia concreta. El numero de columnas de la tabla se denomina
grado de la relacion.

Las relaciones deben cumplir una serie de propiedades:
% (Cada insercion fila-columna debe contener un dato atémico (indivisible y univaluado).

* Todos los datos consignados en una misma columna son del mismo tipo (definidos
sobre el mismo dominio).

* Cada columna tiene asignado un nombre (el del atributo que representa).
* Tl contenido de cada fila debe ser distinto (no puede haber dos filas iguales).
* Ni el orden de las filas ni el de las columnas es significativo.

_ (Clave candidata: atributo o grupo de atributos capaz de identificar cada fila de la rela-
cion. Una clave candidata no debe ser redundante, es decir, si estd formada por un grupo
de atributos, para que no sea redundante, si se quitara uno de los atributos del grupo,
deberia dejar de ser clave candidata.

— Clave principal: la clave candidata mas importante.
— Clave extranjera: atributo de una relacion que es clave principal de otra relacion.

— Reglas de integridad: en el modelo relacional existen principalmente dos reglas de in-
tegridad:
* Integridad de la clave: los atributos clave o que formen parte de la clave no pueden
contener valores nulos (desconocidos).

* Integridad de referencia: una clave extranjera debe contener un valor o bien igual a un
valor en la tabla que contiene este atributo como clave principal, o bien un valor nulo.

5.2.1.1. Preparacién de los modelos

Vamos a describir brevemente unas reglas preliminares que nos permitirdn preparar los mo-
delos conceptuales basados en el modelo E/R, para posteriormente traducirlos a modelos logicos
basados en el modelo relacional. El seguimiento de estas reglas facilitara y garantizara la fiabili-
dad del proceso de transformacion.

92 CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

—

MAD Analisis y diserto de aplicaciones informdticas

El primer paso sera transformar los atributos compuestos y los atributos multiples, que no
podran ser representados en el modelo relacional.

— Transformacion de atributos compuestos. Los atributos compuestos se descompon-
dran en sus atributos mas simples y se haran depender directamente de la entidad.

— Transformacion de atributos miltiples. Los atributos multiples se convertiran en enti-
dades débiles en existencia dependientes de la entidad o asociacion de la que proceden.

— Transformacion de jerarquias. Las relaciones de jerarquia no son faciles de representar
en el modelo relacional, por este motivo se hace necesaria la eliminacién de este tipo de
interrelaciones como paso previo a la traduccion de modelos.

5.2.1.2. Pasos a seguir para la obtencién del modelo 16gico a partir del
modelo conceptual

Una vez que se haya transformado el esquema conceptual para facilitar la traduccién al mo-
delo relacional, pasaremos a traducir entidades y asociaciones a relaciones, tinico objeto utilizado
en este altimo modelo.

— Transformacion de entidades. Todas las entidades se transformar4n en relaciones mante-
niendo el tipo y niimero de atributos. Para ello se podran utilizar dos notaciones distintas:

* Como una tabla con los atributos como cabeceras de columnas.

* Conel nombre de la ENTIDAD seguido de los atributos entre paréntesis y separados
por comas.

La clave principal se sefialara subrayando el atributo o atributos que la componen; las
claves alternativas se indicaran con un doble subrayado y las claves foraneas o extran je-
ras en negrita.

— Transformacién de interrelaciones. Para la transformacion de interrelaciones debere-
mos seguir las reglas que dependeran del tipo de asociacion y de la cardinalidad con la
que cada entidad participe en la asociacion (ver volumen practico).

5.3. Diserio de interfaces de usuario

Teniendo en cuenta que el proceso de disefio debe ir siempre enfocado a las necesidades
del usuario y no del sistema que se implemente, y que la interfaz de usuario es el medio del que
dispone el hombre para comunicarse con un objeto y llevar a cabo una tarea, podemos deducir la
importancia que tiene un buen disefio de la interfaz de usuario.

5.3.1. Objetivos del diseiio

Disefiar una salida para satisfacer el objetivo planteado: toda salida debe responder a
un proposito descrito en la especificacion de requisitos.

— Diseiiar una salida que se adapte al usuario: aunque no es posible disefiar una salida
que se adapte a todos los usuarios que tendra la aplicacion, a base de entrevistas prototi-
pos, etc. se disefardn las salidas que mejor se adapten a las preferencias de los usuarios.

SISTEMAS Y APLICACIONES INFORMATICAS 93

Temario

9.3.2.

MAD

Suministrar la cantidad adecuada de informacion de manera que no sea excesiva la
cantidad de informacion que aparezca en una sola pantalla, pero tampoco hagamos que
el usuario se pierda a través de muchas pantallas.

Asegurar que la salida estd disponible donde se necesita, teniendo en cuenta que la
informacion se suministre al usuario adecuado para que sea bien aprovechada.

Proporcionar la salida en el momento oportuno para que se puedan recibir datos por
dias por meses, etc.

Elegir el método correcto de salida en cada momento, por pantalla, como informe
impreso, etc.

Criterios de diseno

Existe una serie de criterios que se han de seguir para el disefio de una interfaz. Una de las
principales caracteristicas es la usabilidad del software. De nada sirve crear un software que lleve
a un estado de confusion al usuario, por lo que dejarfa de ser util y eficiente. Una interfaz debe

cumplir

las siguientes caracteristicas:
Debe ser facil de asimilar por parte del usuario.

Debe ser flexible, dejando que el usuario pueda dirigir los procesos de forma sencilla
desde distintos tipos de interfaz.

Debe mantener la consistencia en el disefio de toda la aplicacion para facilitar su uso.

Debe ser s6lido, de modo que el usuario pueda obtener los resultados deseados sin tener
que subsanar las dificultades que pueda presentar el sistema.

Son principios fundamentales en el disefio de la interfaz:

La consistencia. Para una misma funcion todas las pantallas deben mantener la misma
estructura y utilizar el mismo método.

La minimizacién del volumen de informacion a recordar basandonos en estructuras in-
tuitivas.

Proporcionar ayuda al usuario mostrando mensajes e incluyendo una opcion que el usua-
rio pueda consultar en cualquier momento.

Evitar el cansancio del usuario mostrando la informacion de forma clara, sencilla y en el
lugar de la pantalla apropiado.

Proporcionar distintos modos de trabajo en las entradas de datos (raton, teclado...).
Minimizar la cantidad de informacion que el usuario deba introducir.

Permitir que el usuario pueda “investigar” sin miedo a provocar errores irreversibles.

5.3.3. Documentacion

El disefio de la interfaz de usuario debe generar también su propia documentacion. Se debe-
ran describir:

94

Las pantallas:

* Representacion grafica de cada uno de los formularios con las partes que lo componen.

* Mapas de pantallas donde se muestran graficamente cada uno de los formularios
junto con las relaciones que mantienen.

CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

L T

MAD Andalisis y disefio de aplicaciones informaticas

* Establecer los formularios que son més importantes porque van a ser compartidos

por distintos usuarios, por su uso reiterado, etc. y que deben ser creados sin dar lugar
a posibles errores.

Los informes:
* Descripcion de los formatos de los informes generados.

* Elementos vinculados directa o indirectamente con los informes.

6. CODIFICACION

La finalidad del andlisis y el disefio es la consecucion de un software descrito en un lenguaje
que pueda ser “entendido” por el ordenador. Nos encontramos ahora en la fase en la que se realiza
la traduccion a un lenguaje de programacion. Parece que esta tarea es la que menos importancia
tiene, que si se ha hecho un buen analisis y un buen disefio, el resultado tiene que ser una buena
aplicacion, pero sin duda, la eleccion del lenguaje de programacion y el estilo de programacion
tienen mucho que decir en la calidad del software. Por ejemplo, a la hora de realizar tareas de
mantenimiento, la estructura del programa y las posibilidades del lenguaje de programacion seran
factores muy importantes que facilitaran o encarecerdn esta labor.

Caracteristicas que han de tenerse en cuenta a la hora de seleccionar un lenguaje de progra-
macion u otro pueden ser:

— Facilidad de traducci6n del disefio al cédigo: se debera elegir un lenguaje que permita
implementar las estructuras de datos y las estructuras de control utilizadas en el disefio.

— Eficiencia del compilador: si la aplicacion necesita de un codigo eficiente y rapido con
en el menor tamafio posible sera imprescindible la eleccion de un lenguaje con un buen
compilador.

— Portabilidad del cédigo fuente: para no tener que realizar tareas de mantenimiento al
cambiar el sistema operativo o el procesador de la maquina para la que fue disefiado, e
incluso para facilitar la reutilizacion del software.

— Disponibilidad de herramientas de desarrollo: que reducen el tiempo de construccion
y mejoran algunas caracteristicas del software.

— Facilidad de mantenimiento: al disponer de elementos de documentacion para el codigo.

Una vez elegido el lenguaje de programacion sélo queda realizar la codificacion que, como
hemos dicho anteriormente, también es una tarea que influye en la calidad del producto final. No
pretendemos exponer aqui como se realiza la codificacion, pero si indicaremos algunos principios
que deben observarse a la hora de realizar esta tarea y que ayudaran a obtener un codigo estruc-
turado, claro, facil de comprender, sencillo y elegante.

— Utilizar un estilo de programacion estructurada usando estructuras de control o simulan-
dolas en el caso de que el lenguaje no las implemente directamente.

— Utilizar las instrucciones GOTO de forma controlada, sobre todo, para simular estructu-
ras de control en lenguajes que no las implementan.

— Utilizar un estilo de programacion modular intentando en lo posible aislar las estructuras
de datos junto a sus funciones de acceso.

SISTEMAS Y APLICACIONES INFORMATICAS 95

lemario

Utilizar todas las posibilidades del lenguaje para documentar cada una de las llamadas a
los modulos que componen el programa.

Utilizar rutinas de entre cinco y 25 lineas de c6digo (salvo algunas excepciones).
Cuidar el formato de presentaci6n introduciendo sangrias, lineas en blanco, etc.
Buscar siempre la simplicidad y la sencillez; buscar siempre la solucion mas simple.
Evitar anidaciones profundas y proposiciones “then” nulas.

Utilizar nombres apropiados para los identificadores.

Otro principio fundamental en la codificacion de los programas es la documentacion. Se
deben utilizar todas las posibilidades del lenguaje para documentarlo de forma concisa y
clara, sin comentarios obvios.

7. PRUEBAS

Las estrategias de prueba de programa van a tener una triple finalidad: van a ser utiles para el
programador, para medir la calidad del software, y para el cliente.

Si queremos obtener el maximo rendimiento a una prucba debemos realizar un disefio de la
prueba. En este disefio debemos incluir:

l.

e

4.

Planificacion de la prueba.
Disefio de los casos de prueba.
Ejecuciones de las pruebas.

Recopilacion de datos y evaluacion de los resultados.

Una prueba del software debe ser lo suficientemente flexible para promover la creatividad
y la adaptabilidad del software, y lo suficientemente rigida para permitir un buen seguimiento
de la misma.

7.1. Pruebas del software

Las pruebas del software son un conjunto de actividades que permiten llevar a cabo una pla-
nificacion y seguimiento ordenado de las mismas.

En estas pruebas el ingeniero debe ayudarse de una plantilla para su seguimiento. Esta plan-
tilla debe tener las siguientes caracteristicas:

Comienza a nivel de médulo y va avanzando hasta el sistema completo ya integrado.
Podemos aplicar simultdneamente varias técnicas de prueba.
La prueba la llevan a cabo el programador y un grupo de prucba.

Podemos incluir la depuracion dentro de las técnicas de prueba.

Una estrategia de prueba debe integrar pruebas de bajo nivel y de alto nivel. Debe ser una
guia tanto para el programador como para el director del proyecto.

96

CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

A

MAD Analisis y diseio de aplicaciones informaticas

7.2. Verificacion y validacion

Las pruebas del software forman parte de lo que podemos denominar como verificacion y valida-
cion del software. La verificacion se refiere al hecho de comprobar si estamos desarrollando el software
correctamente. La validacion se encarga de comprobar si estamos construyendo el producto correcto.

7.3. Organizacion de la prueba

Normalmente son los desarrolladores del software las personas que empiezan a probar el
software. Empiezan probando cada uno de los modulos que han ido disefiando, hasta llegar a las
pruebas del sistema completo.

Los desarrolladores del software si van a encontrar bastantes errores en las pruebas modulares, pero
normalmente no suelen encontrar demasiados fallos en las pruebas del sistema. Este hecho se puede
entender facilmente, porque son ellos mismos quienes han disefiado el programa y conocen demasiado
bien su uso y manejo. Saben siempre qué botdn, tecla, o funcién deben usar en cada momento.

Para las pruebas del sistema son mucho mejores los grupos independientes de prueba o
GIP. El GIP pertenece al equipo del proyecto, pero deben ser usuarios o programadores ajenos
al mismo. Su mision es probar las versiones beta del programa e informar a los desarrolladores
del mismo de los fallos, incoherencias, posibles mejoras aplicables al programa, etc. Cuanto mas
alejado del proyecto se esté, mejor. El GIP debe estar en contacto permanente con los desarrolla-
dores durante las fases de prueba.

8. INSTALACION

Esta tarea tiene como finalidad la puesta en marcha del sistema desarrollado y la realizacion
de una evaluacion del resultado para, por ultimo, hacer entrega de la aplicacion al cliente.

8. 1. Instalacion

Una vez instalado el equipo y antes de que el sistema se ponga en funcionamiento, se habran
debido convertir los datos almacenados bajo el viejo sistema al sistema nuevo y poco a poco se
iran convirtiendo los datos historicos.

Con el nuevo sistema se hara entrega de la documentacion que le acompafia. Esta documenta-
cion la componen: la guia de instalacion, que indicard a nivel técnico cudles serdn los pasos a seguir
para la instalacion; las especificaciones de la aplicacion, que indicaran detalles técnicos sobre la
aplicacion y cada uno de sus modulos; las notas de liberacion, como complemento a la guia de ins-
talacion y para corregir posibles errores detectados después de terminada la guia; el manual de pro-
cedimientos, donde se indica al usuario la manera de proceder con el nuevo sistema y, por tltimo, el
manual de administracion del sistema, para la persona responsable del sistema en la empresa.

Se debera comenzar a utilizar el sistema para realizar transacciones reales, y asi comprobar
su correcto funcionamiento antes de la entrega definitiva al usuario. Para ello, en un paso previo,
los usuarios habran recibido la formacion adecuada que les permita operar con el nuevo sistema
y serd en este momento cuando, comprobando el funcionamiento real, puedan surgirle dudas que
estaran a tiempo de resolver.

SISTEMAS Y APLICACIONES INFORMATICAS 97

Temario MAD

El traspaso final al nuevo sistema puede realizarse de alguna de las siguientes formas:

_ Proceso encadenado: en el proceso encadenado continta funcionando el sistema anti-
guo para la realizacion de las transacciones, sin embargo, en un proceso posterior, el nue-
vo sistema realizara la misma transaccion. Los resultados del nuevo sistema se evaluaran
y compararan con los producidos por el sistema antiguo. Este método de implantacion
se utiliza para sistemas que requieren mucha fiabilidad, ya que se pueden comprobar los
resultados del sistema antes de que su operatividad sea definitiva.

— Proceso directo: el proceso directo consiste en la desactivacion del sistema antiguo y la
activacién del nuevo sistema, que sera el encargado de realizar las transacciones. Evi-
dentemente no es recomendable para sistemas que requieran extrema fiabilidad; es una
posibilidad cuando el sistema no €s demasiado complejo y en algunas ocasiones es la
{inica posibilidad si no es posible la convivencia de los dos sistemas.

— Proceso en paralelo: los dos sistemas, en este proceso, conviviran realizando las tran-
sacciones simultaneamente de esta forma. Cuando la evaluacion de los resultados del
nuevo sistema sea positiva se podréa desactivar el antiguo. Se suele utilizar este método
si el sistema exige una alta fiabilidad o si los dos sistemas son tan distintos que no se
produciran salidas duplicadas.

— Proceso por subsistemas: los dos sistemas, anliguo y nuevo, s reparten el trabajo en este
método. Unas transacciones se realizaran en un sistema y otras en el otro, de forma que se
irdn sumando subsistemas poco a poco al sistema nuevo de una forma planificada.

8.2. Evaluacion y ajuste

Una vez obtenidos resultados del nuevo sistema se evaltian y se corrigen los posibles errores
que se hayan detectado, ya sean de disefio 0 de desarrollo, y se corrigen detalles que no sean del
total agrado del cliente, teniendo en cuenta los si guientes aspectos:

_ Los errores serdn corregidos en su totalidad y sin excepciones.

_ S los errores son criticos, se debe suspender la actividad del nuevo sistema 'y volver a
activar el antiguo.

_ Sino lo fueran, deberia seguir la actividad del nuevo sistema y resolver el problema lo
antes posible.

8.3. Informe final

Se habra de realizar un documento final donde se informe del estado del nuevo sistema y se
incluyan la correcciones realizadas, las observaciones de los usuarios, etc. Dicho informe debera
ser aprobado por el cliente.

9. EXPLOTACION

En esta etapa el usuario se hace cargo de la aplicacion y de la operacion del nuevo sistema.
Para ello cuenta con la formacion adecuada, la documentacion necesaria y un sistema en perfecto
funcionamiento.

98 CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

T T

MAD Analisis y disefio de aplicaciones informaticas

10. MANTENIMIENTO

Tarde o temprano cualquier aplicacion va a necesitar ser modificada, ya sea por que en el
sistema se introduce un hardware nuevo, porque se descubren errores que no habian sido detec-
tados, o simplemente porque cambian las necesidades del cliente. A este proceso es a lo que se le
denomina “mantenimiento”. Por este motivo y para facilitar el futuro trabajo de mantenimiento
los desarrolladores deben poner especial cuidado a la hora de elaborar la documentacion del pro-
yecto, que debera ser estructurada, clara, legible y detallada.

Otros factores que también facilitaran esta tarea son:

— La independencia de los modulos que conforman la aplicacion, de esta forma se podra
proceder a la modificacion de los que se vean implicados en el mantenimiento sin que
esto afecte a los demas.

— El lenguaje de programacion elegido, ya que dependiendo del nivel del lenguaje (si es
un lenguaje de alto nivel se facilita la tarea de comprension de las lineas de c6digo) y
de las caracteristicas del mismo (posibilidad de introducir comentarios, etc.), la tarea de
localizacion de errores y de modificacion es mas sencilla.

— El trabajo y el tiempo invertido en la validacion y prueba de los programas que compo-
nen la aplicacion, ya que son una inversion a largo plazo.

10.1. Tipos de mantenimiento

Ya que existen diferentes factores que producen que se dispare el mantenimiento de una
aplicacion, podemos también encontrar distintos tipos de mantenimiento: correctivo, adaptativo,
perfectivo y preventivo.

-~ El mantenimiento correctivo es el que se encarga de la correccion de errores detectados
en la codificacion, en el disefio o en los requisitos. Evidentemente, el coste de este man-
tenimiento ird creciendo a medida que los errores se encuentren en una fase mas tempra-
na en el proceso de elaboracion de la aplicacion. Por ejemplo, un error de codificacion
serd siempre menos costoso que un error en los requisitos.

— El mantenimiento adaptativo es el que se produce por la necesidad de adaptar la apli-
cacion a un hardware (p.ej. nuevos soportes para los datos) o un software nuevo (p.ej.
nuevo sistema operativo) introducido en el sistema.

— El mantenimiento perfectivo es el que se encarga de adaptar el software a nuevas nece-
sidades del cliente producidas por cambios en su empresa.

— El mantenimiento preventivo introduce cambios en el software para aumentar su cali-
dad y su seguridad sin introducir nuevas funcionalidades pero que serviran para facilitar
posteriores tareas de mantenimiento.

En algunos casos se pueden entender también como tareas propias del mantenimiento las
labores encaminadas a la localizacion y almacenamiento de funciones y procedimientos elabo-
rados para su inclusion en una biblioteca y reutilizar para nuevas aplicaciones el software ya
construido.

SISTEMAS Y APLICACIONES INFORMATICAS 99

Temario MAD

10.2. Actividades de mantenimiento

Es un error comparar el mantenimiento del software con el mantenimiento del hardware.
Mientras que este ultimo puede resumirse en el cambio de componentes desgastados por otros
nuevos, para poder mantener el software se han de realizar tareas mas complejas.

— Se debera empezar por comprender la aplicacion, para lo que se debera estudiar su
estructura y su funcionalidad, ademas de comprender las modificaciones que se deben
realizar y los nuevos requisitos que se han de afadir.

— El segundo paso sera modificar propiamente el software, teniendo en cuenta los efectos
que tendra la modificacién sobre el resto de componentes, asi como modificar la docu-
mentacion y las interfaces de la aplicacion.

El tercer paso consiste en la realizacion de pruebas que permitan confirmar la funciona-
lidad del modulo, modificado asi como la funcionalidad de la aplicacion completa.

Todas estas acciones deberan tener en cuenta también que sucesivas tareas de mantenimiento
sobre una aplicacion no deberian contribuir a su deterioro progresivo, ya que se podria perder la es-
tructura de la aplicacion, la cohesion de sus modulos y hacer que la documentacion no sea fiable.

100 CUERPO DE PROFESORES TECNICOS DE FORMACION PROFESIONAL

